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Intuitively, turning %]@n4 ##/Wy<$ $$= into I have a dream today! should be hard, 
except for Alice and Bob.

Fact: cryptographers are parnoïac        they sometimes require more !

Cipher I have a dream today! %]@n4 ##/Wy<$ $$=

2Hà$ ?*ç@+° ££ !¨v65

≈

It should be hard for Eve to guess wether she’s looking at an encrypted message 
(ciphertext) or to pure rubish (random string).
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The security requirements in terms of a game...

... or “Cryptographers will never grow up”.

Cipher
1!$£_&& ç%”1l87 : ;-)

or               ??Cipher

Eve

• Eve wins if she guesses correctly.

• Objective for the cryptographer: make sure that Eve cannot do better than guessing 
correctly 50% of the time.
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• What if the optimal solution cannot be 
implemented?

• Distinguishing in practice using 
compression

• Example: Generalized linear 
distinguisher
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•      and     are two arbitrary distributions over a finite set Z.P0 P1

A
distribution       

or

0 or 1
Z1, . . . , Zq ∈ Z

S

P0 P1

• The ability of A to distinguish P0 from P1 is its advantage:A P0 P1

AdvA(P0,P1) = |PrP0 [A(Z1, . . . , Zq) = 1]− PrP1 [A(Z1, . . . , Zq) = 1]|
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D(p‖q) =
∑

a∈Z
p[a] log

p[a]
q[a]

always non-negative, 0 iff p=q, infinite iff                               Supp(p) ! Supp(q)( )
can be shown to be optimal.

A!Using maximum-likelihood techniques, the q-limited distinguisher A* which outputs 
1 when by
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where
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P0 P1 Supp(P0) ∪ Supp(P1) = Z
A!

P0 P1

Data Complexity Analysis

Using the theory of types & Sanov’s theorem         asymptotic data complexity of A*.A!

C(P0,P1) ≈
‖P1 − P0‖22

8 ln 2

1− BestAdvq(P0,P1) ≈ 2−qC(P0,P1)

Heuristic:      
       

       
       

allows A* to reach a non-negligible advantage

q ≈ 1/C(P0,P1)
A!

13



Thomas Baignères PhD Defense

Example: Biased Dice

P0 = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) P1 = (1
6 , 1

6 , 2
6 , 0, 1

6 , 1
6 )

14



Thomas Baignères PhD Defense

Example: Biased Dice

P0 = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) P1 = (1
6 , 1

6 , 2
6 , 0, 1

6 , 1
6 )

C(P0,P1) = max
0<λ<1

log
(

6
2λ+4

)

14



Thomas Baignères PhD Defense

Example: Biased Dice

P0 = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) P1 = (1
6 , 1

6 , 2
6 , 0, 1

6 , 1
6 )

C(P0,P1) = max
0<λ<1

log
(

6
2λ+4

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

14



Thomas Baignères PhD Defense

Example: Biased Dice

P0 = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) P1 = (1
6 , 1

6 , 2
6 , 0, 1

6 , 1
6 )

C(P0,P1) = max
0<λ<1

log
(

6
2λ+4

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

≈ 0.263

14



Thomas Baignères PhD Defense

Example: Biased Dice

P0 = (1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ) P1 = (1
6 , 1

6 , 2
6 , 0, 1

6 , 1
6 )

C(P0,P1) = max
0<λ<1

log
(

6
2λ+4

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0.305

0.31

0.315

0.32

0.325

0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

≈ 0.263

approx.                   queries (rolls) are sufficient to distinguish one dice from 
the other.

This is the proof that all this theory has a practical application...
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Example with ε = 0.01

q ≈ 8 ln 2
ε2

allow to reach a non-negligible advantage.

C(P0,P1) ≈ − log
(

1− ε2

8

)
≈ ε2

8 ln 2

λ ≈ 1
2Minimum reached for 
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Possible Extensions

• Case where the distributions are “close” to each other

• Case where one of the hypotheses is composite

• Case where one of the two distributions is unknown

• etc.
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On the Need for Projection-Based Distinguishers

• If      is too large, the best distinguisher cannot be implemented.|Z|

Distinguish in G instead 
of Z.

This reduces the power 
of the distinguisher.

G
Z

h

h

h

Z

G

• Possible solution: reduce the sample size using a projection:

18



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZnP0 = U P1 = P

19



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZnP0 = U P1 = P

19



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZnP0 = U P1 = P

• By implementing the optimal strategy (after the linear compression), the 
advantage of this linear distinguisher verifies:

1−Adv(U,P) .= 2−qC(U,P)

19



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZnP0 = U P1 = P

• By implementing the optimal strategy (after the linear compression), the 
advantage of this linear distinguisher verifies:

1−Adv(U,P) .= 2−qC(U,P)

a · Z ∼ P ⇔ Z ∼ P

a · Z ∼ U ⇔ Z ∼ U

19



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZnP0 = U P1 = P

• By implementing the optimal strategy (after the linear compression), the 
advantage of this linear distinguisher verifies:

1−Adv(U,P) .= 2−qC(U,P)

a · Z ∼ P ⇔ Z ∼ P

a · Z ∼ U ⇔ Z ∼ U

• Definition: linear probability of P: LPa(P) =
(
EP

(
(−1)a·Z))2

19



Thomas Baignères PhD Defense

Example: Linear Distinguishers

•                                                                                                 

• This is a linear distinguisher based on the mask a.

Z = {0, 1}n G = {0, 1} h(Z) = a · Z = a1Z1 ⊕ · · ·⊕ anZn

• Roughly:                                                                         are enough (well known...)

P0 = U P1 = P

• By implementing the optimal strategy (after the linear compression), the 
advantage of this linear distinguisher verifies:

1−Adv(U,P) .= 2−qC(U,P)

a · Z ∼ P ⇔ Z ∼ P

a · Z ∼ U ⇔ Z ∼ U

• Definition: linear probability of P: LPa(P) =
(
EP

(
(−1)a·Z))2

C(U,P) ≈ LPa(P)
8 ln 2

q ≈ 8 ln 2
LPa(P)
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Extending the Notion of Linear Probability

• The previous example only works for sets of the form                   .

• We at least need to generalize the notion of linear probability to arbitrary sets.

Z = {0, 1}n

• Consequence: when                    this new definition corresponds to the old one!Z = {0, 1}n

• A character of Z is a homomorphism 

• Example: when                    we have                          for some u

χ : Z −→ C×

Z = {0, 1}n χ(a) = (−1)u·a

Z

Definition

The linear probability of P over the group Z with respect to the character ch isZ χP

LPχ(P) = |EP (χ(Z)) |2
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Lin. Dist. for Sources overs Arbitrary Sets

We have wonderful lemma...
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Lin. Dist. for Sources overs Arbitrary Sets

Section 7.6 Linear Distinguishers for Sources over Arbitrary Sets

distribution over H (in particular, this implies that d divides the order of G and that
χ is balanced). When G ∼ P̃1 then H ∼ Pu, where u ∈ H is unknown, and where Pu is
the distribution over H defined by

Pu[h] =

{
1−ε
d + ε when h = u

1−ε
d otherwise,

(7.10)

where 0 < ε< 1. Letting P̃ be the distribution of G ∈ G and P the distribution of
H = χ(G), we can write the hypothesis testing problem

H0 : P̃ = P̃0 vs. H1 : P̃ = P̃1

as
H0 : P = P0 vs. H1 : P ∈ {Pu : u ∈ H}.

Lemma 7.5 Let P0 be the uniform distribution on a finite subgroup H of C× of order d.
Let D = {Pu : u ∈ H} be a set of d distributions on H defined by (7.10). The q-limited
distinguisher between the null hypothesis H0 : P = P0 and the alternate hypothesis
H1 : P ∈ D defined by the distribution acceptance region Π"

q = Π" ∩ Pq, where

Π" =
{

P ∈ P : ‖P‖∞ ≥ log(1− ε)
log(1− ε)− log(1 + (d− 1)ε)

}
, (7.11)

is asymptotically optimal and its advantage BestAdvq is such that

1− BestAdvq(H0, H1)
.= 2q inf0<λ<1 log 1

d((1+(d−1)ε)λ+(d−1)(1−ε)λ).

Proof. According to Theorem 6.4, the best distinguisher is defined by the acceptance
region

Π" = {P ∈ P : min
u∈H

Lu(P) ≤ 0} with Lu(P) =
∑

h∈H

P[h] log
P0[h]
Pu[h]

.

Since
Lu(P) = P[u] log

1− ε

1 + (d− 1)ε
− log(1− ε),

the minimum is obtained for the u ∈ H which maximizes P (recall that ε > 0). From
this we easily deduce (7.11). In that case, Theorem 6.4 also states that

1− BestAdvq(H0, H1)
.= max

u∈H
2−qC(P0,Pu).

It is easy to see that C(P0, Pu) = C(P0, Pu′) for u (= u′, so that

1− BestAdvq(H0,H1)
.= 2−qC(P0,Pu)

– 91 –

We have wonderful lemma...
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We have wonderful lemma...

Which shows how to use the generalized     
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Applications on SAFER K/SK

• We attack SAFER with a    -linear cryptanalysis.

• Use the toolbox to find characteristics within SAFER K/SK.

• To compute the complexities we consider several characteristics among the hull 
(i.e., all characteristics share the same input/output characters).

• To turn distinguishing attacks into key recovery attacks, we also take advantage 
of the linearity of the key schedule.

!
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Applications on SAFER K/SK

• We attack SAFER with a    -linear cryptanalysis.

• Use the toolbox to find characteristics within SAFER K/SK.

• To compute the complexities we consider several characteristics among the hull 
(i.e., all characteristics share the same input/output characters).

• To turn distinguishing attacks into key recovery attacks, we also take advantage 
of the linearity of the key schedule.

!

Nbr Rounds Complexity

2

3

4

5

223/231

238

249

256

23
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Other Applications

• Two new Digital Encryption Algorithm for Numbers (based on the AES): DEAN18 
and DEAN27 which respectively encrypts blocks made of 18 and 27 decimal 
digits.

• Resistance against our generalization of linear cryptanalysis.

• New attacks on TOY100 (toy cipher that encrypts blocks of 32 decimal digits).

• Break 9 (10 ?) rounds out of 12.

24
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Outline

Block Ciphers

Dial C for Cipher

KFC: the Krazy Feistel Cipher
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Outline

Block Ciphers

Dial C for Cipher

KFC: the Krazy Feistel Cipher

• The Luby-Rackoff Model

• Vaudenay’s decorrelation theory

26
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Outline

Block Ciphers

Dial C for Cipher

KFC: the Krazy Feistel Cipher
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Outline

Block Ciphers

Dial C for Cipher

KFC: the Krazy Feistel Cipher
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A Typical Iterated Block Cipher

• A block cipher on a finite set is a family 
of permutations on that set, indexed 
by a parameter call the key.
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A Typical Iterated Block Cipher

• A block cipher on a finite set is a family 
of permutations on that set, indexed 
by a parameter call the key.

• Such a cipher is usually iterated, i.e., 
made of several rounds.

• Each round is parameterized by a key 
derived from the main secret key by 
means of a Key Schedule.
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A Typical Iterated Block Cipher

• A block cipher on a finite set is a family 
of permutations on that set, indexed 
by a parameter call the key.

• Such a cipher is usually iterated, i.e., 
made of several rounds.

• Each round is parameterized by a key 
derived from the main secret key by 
means of a Key Schedule.

• Usually, the rounds all share the same 
design, e.g., a round key addition 
followed by a fixed (nonlinear) 
transformation.

28



Thomas Baignères PhD Defense

C1, C2, . . . , CqP1, P2, . . . , Pq

C!C or C

What Should we Expect from a Block Cipher?

It should be fast and secure!
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What Should we Expect from a Block Cipher?

It should be fast and secure!

I’m bad

29



Thomas Baignères PhD Defense

C1, C2, . . . , CqP1, P2, . . . , Pq

C!C or C

What Should we Expect from a Block Cipher?

It should be fast and secure!

I’m badMy guess is...

29
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We consider a q-limited adversary A in the Luby-Rackoff Model:

The Luby-Rackoff Model

AOC or C* 0 or 1

q plaintexts

q ciphertexts
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We consider a q-limited adversary A in the Luby-Rackoff Model:

The Luby-Rackoff Model

The block cipher C is secure if the advantage of A is negligible for all A’s.

AOC or C* 0 or 1

q plaintexts

q ciphertexts

Advantage of the q-limited adversary A between C and C*

AdvA(C,C!) = |Pr[A(C) = 1]− Pr[A(C!) = 1]|

C!

30
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We consider a q-limited adversary A in the Luby-Rackoff Model:

The Luby-Rackoff Model

A is non-adaptive if the q plaintexts are chosen “at once”.

AOC or C* 0 or 1

p1, . . . , pq

O(p1), . . . ,O(pq)

30
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A is adaptive if plaintext i depends on ciphertexts                   .1, . . . , i− 1

We consider a q-limited adversary A in the Luby-Rackoff Model:

The Luby-Rackoff Model

AOC or C* 0 or 1

p1

pq

O(p1)

O(pq)

30
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Computing 

• Computing the advantage is not a trivial task in general.

• Possible solution: use Vaudenay’s Decorrelation Theory.

AdvA(C,C!)

max
A

AdvA(C,C!) = 1
2‖[C]q − [C!]q‖

31

[C]q =

|M|q

|M|q for a 128-bits block cipher|M|q = 2128·q
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Tricks for Computing 

To deal with the size of the distribution matrices:

AdvA(C,C!)

 [C2 ◦ C1]q = [C1]q × [C2]q

[Vau03]

C1

C2

Independent

permutations
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Tricks for Computing 

To deal with the size of the distribution matrices:

AdvA(C,C!)

 [C2 ◦ C1]q = [C1]q × [C2]q

[Vau03]

C1

C2

Independent

permutations

Take advantage of the symmetries of the block cipher in order to compute the 
distribution matrix of each round

32
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Description of C

C corresponds to the AES where “addRoundKeys  SubBytes” is replaced by 
mutually independent random permutations.

⊕ ⊕⊕ ⊕

S S S S

L

AES
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Description of C

C corresponds to the AES where “addRoundKeys  SubBytes” is replaced by 
mutually independent random permutations.

S!
1

L

S!
2 S!

3 S!
16

AES C

• C is made of 9 identical rounds, followed by a layer 
of substitution boxes.

• C uses                      mutually independent random 
8-bits substitution boxes 

16 · 10 = 160

34
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Computing

We consider a version of C reduced to 3 rounds:

[C]2

S(1)
1

L

S(1)
2 S(1)

3 S(1)
16

L

S(2)
1 S(2)

2 S(2)
3 S(2)

16

S(3)
1 S(3)

2 S(3)
3 S(3)

16

}

}

}

}

}

[S]2

[S]2

[S]2

[L]2

[L]2
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Computing
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[C]2
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1 S(2)

2 S(2)
3 S(2)

16

S(3)
1 S(3)

2 S(3)
3 S(3)
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}

}

}

}

}

[S]2

[S]2

[S]2

[L]2

[L]2

[C]2
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Computing

We consider a version of C reduced to 3 rounds:

[C]2

[S]2 [S]2 [S]2[L]2 [L]2[C]2 × × × ×=
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Computing

We consider a version of C reduced to 3 rounds:
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Computing

For a r-round version of C we have:

[C]2 = PS× (L)r−1 × SP

where    is a                matrix.L 216 × 216

AdvA(C,C!)
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Computing

For a r-round version of C we have:

[C]2 = PS× (L)r−1 × SP

where    is a                matrix.L 216 × 216

Can we reduce the computational complexity even further?

AdvA(C,C!)

Yes! But the diffusion has to be chosen with care...

max
A
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1
2
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Computing

For a r-round version of C we have:

[C]2 = PS× (L)r−1 × SP

where    is a                matrix.L 216 × 216

Can we reduce the computational complexity even further?
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Yes! But the diffusion has to be chosen with care...
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1
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36

Computing the advantage of the best distinguisher (either adaptive or not) only 
requires operations on                 matrices (instead of                   initially).625× 625 2256 × 2256

max
A

AdvA(C,C!) =
1
2

|||
(
L×W

)r−2
× L− C!|||∞
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Values of AdvA(C,C!)

Chapter 11 Dial C for Cipher

r 1 2 3 4 5 6
Adv(C, C!) 1 1 2−4.0 2−23.4 2−45.8 2−71.0

r 7 8 9 10 11 12
Adv(C, C!) 2−126.3 2−141.3 2−163.1 2−185.5 2−210.8 2−238.9

Table 11.1: Exact values of the advantage of the best 2-limited (non-)adaptive distin-
guisher for several number of rounds r.

Theorem 10.1 allows to conclude.

Results of our practical computations are reported in Table 11.1. These exper-
iments where programmed in C using the GNU Multiple Precision arithmetic library
(GMP) [54] and the MPFR library [114] for multiprecision floating-point computations.
All the intermediate computations where done using rational numbers instead of floating
point numbers to keep maximum precision.

Security Result 11.1 Seven rounds of C are enough to obtain provable security against
2-limited (non-)adaptive adversaries.

11.3 Consequences for Iterated Attacks of Order 1, Linear
and Differential Cryptanalysis

According to Corollary 10.1 and to the results obtained in Table 11.1, 7 rounds
of C are enough to ensure provable security against any iterated attack of order 1, pro-
vided that the number of queries q is negligible compared to 264. In the particular case
of linear cryptanalysis, the discussion following (10.1) allows to deduce from Table 11.1
that 7 rounds are enough resist linear cryptanalysis (whatever the number of queries
granted to the adversary). Equation (10.2) leads to the same conclusion for differen-
tial cryptanalysis. In the following section we will derive exact results concerning both
linear and differential cryptanalysis instead of upper-bounds.

Security Result 11.2 Seven rounds of C are enough to obtain provable security against
iterated attacks of order 1.

– 174 –
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7 rounds of C are enough to obtain provable security against 2-limited adversaries
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What about Higher Orders?

We did not manage to prove the security of C against higher q-limited adversaries 
for q > 2.
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What about Higher Orders?

We did not manage to prove the security of C against higher q-limited adversaries 
for q > 2.

Idea: try to bound the advantage of the best q-limited adversary by that of the best 
(q-1)-limited adversary.

39
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Perfectly random permutation vs. Perfectly random function
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independent outputs
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Rand. Permutations vs. Rand. Functions

40

F!

2 correlated inputs distinct on each box input
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2 correlated outputs

F! F! F!

2 independent outputs
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Towards a New Construction

41
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Towards a New Construction

• Non negligible risk of collision after a 
F-box
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• Use the “sandwich technique” to 
obtain (almost) pairwise independent 
inputs before the layer of random 
functions.
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Towards a New Construction

• Non negligible risk of collision after a 
F-box

• Use the “sandwich technique” to 
obtain (almost) pairwise independent 
inputs before the layer of random 
functions.

• The construction is not invertible. We 
plug it in a Feistel scheme.
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Results obtained on KFC

• With this approach, we manage to prove the security against adversaries up to 
the order 70 (for an unreasonable set of parameters).

• The bounds are not tight at all         it is certainly possible to improve our results.
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Conclusion



“[...] the methodology of 
provable security has become 
unavoidable in designing and 

evaluating new schemes”
[JSe03]
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“[...] the methodology of 
provable security has become 
unavoidable in designing and 

evaluating new schemes”
[JSe03]

We hope to have made 
a significant step 

towards its extension to 
block ciphers!

public key schemes



Thank you for your attention!


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