
Introduction
Optimal distinguisher between two random sources
Optimal distinguisher between two random oracles

Conclusion

How Far Can We Go Beyond Linear
Cryptanalysis?

T. Baignères P. Junod S. Vaudenay

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

ASIACRYPT 2004

T. Baignères, P. Junod, S. Vaudenay How Far Can We Go Beyond Linear Cryptanalysis?



Introduction
Optimal distinguisher between two random sources
Optimal distinguisher between two random oracles

Conclusion

Outline

1 Introduction

2 Optimal distinguisher between two random sources
General case
One source following a uniform distribution
Source of random bit strings
Statistical distinguishers

3 Optimal distinguisher between two random oracles
Beyond linear probabilities and linear expressions
Beyond the piling-up lemma
From distinguishers to key-recovery attacks

4 Conclusion

T. Baignères, P. Junod, S. Vaudenay How Far Can We Go Beyond Linear Cryptanalysis?



Introduction
Optimal distinguisher between two random sources
Optimal distinguisher between two random oracles

Conclusion

Introduction

Original Motivation

To give a generalization of linear cryptanalysis.

Result
The paper turns out to propose a very general statistical
framework which can be used to construct and study optimal
distinguishers, and to generalize the fundamental concepts
behind linear cryptanalysis.
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Previous Work

The original linear cryptanalysis was proposed by Matsui at
EUROCRYPT’93. Since then, several generalizations have been
proposed.

Kaliski and Robshaw used multiple linear approximations,
Vaudenay proposed the χ2 attack, where a cipher can
simply be considered as a black box,
Harpes, Kramer, and Massey replaced linear expressions
with I/O sums,
Harpes and Massey considered partition pairs of the input
and output spaces of the cipher,
More recently, Junod and Vaudenay considered linear
cryptanalysis in a purely statistical framework.
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Previous Work

and at CRYPTO’04 . . .

Biryukov, De Cannière, and Quisquater used multiple
linear approximations in order to reduce attack
complexities against DES,
and Courtois showed how a cipher that was designed to
resist LC could be broken by his bi-linear cryptanalysis.
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D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
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General case (1)

D0 or D1

Random source

S

A

0 or 1

z1, . . . , zn ∈ Z
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General case (1)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

The distinguisher decides
whether D = D0 or D = D1

following either distribution D0 or
D1.
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Random source generating iid values in Z
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D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z

following either distribution D0 or
D1.

The distinguisher decides
whether D = D0 or D = D1

- output 0 when D = D1 (probability α)
- output 1 when D = D0 (probability β)

Two types of mistake:

Random source generating iid values in Z
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General case (1)

D0 or D1

0 or 1

A

S

z1, . . . , zn ∈ Z

following either distribution D0 or
D1.

Two types of mistake:
- output 0 when D = D1 (probability α)
- output 1 when D = D0 (probability β)The distinguisher decides

whether D = D0 or D = D1

Optimal distinguisher ⇔ Pe = 1
2 (α + β) minimum

Random source generating iid values in Z
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General case (2)

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0 [a]

PrD1 [a]
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Probability that S sent a
when D = D0

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0 [a]

PrD1 [a]

Number of times S sent a
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General case (2)

This minimizes Pe ⇒ optimal distinguisher
(aka Neyman-Pearson lemma)

Optimal Rule:
choose 0 when LLR(zn) ≥ 0
choose 1 when LLR(zn) < 0

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
LLR(zn) =

∑

a∈Z
s.t. N(a|zn)>0

N(a | zn) log
PrD0 [a]

PrD1 [a]
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General case (3)

For a given Pe, how many queries does the distinguisher need?

Theorem
Considering that

Z1, . . . , Zn are iid, following distribution D ∈ {D0,D1},
D0 is close to D1, i.e., Pr D0 [z]− Pr D1 [z] = εz � 1,

n =
d

∑

z∈Z

ε2
z

pz

with Pe ≈ 1− Φ

(√
d

2

)
.

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2
u2
du .
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One source following a uniform distribution

Squared Euclidean Imbalance (SEI)

If D1 is the uniform distribution (i.e., Pr D1 [z] = pz = 1
|Z| ), we

define the Squared Euclidean Imbalance (SEI):

∆(D0) = |Z|
∑

z∈Z
ε2
z .

Corollary

n =
d

∆(D0)
with Pe ≈ 1− Φ

(√
d

2

)
.

⇒ The complexity of distinguishing D0 from D1 can be
measured by means of the SEI.
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Link to χ2 attacks

In a χ2 cryptanalysis, the adversary does not need to know D1,
i.e., what exactly happens in the inner transformations of the
cipher (which can therefore be considered as a black box).

Complexity of a χ2 attack→ O(1/∆(D0))

Not worse (up to a constant term) than an optimal
distinguisher.

When one does not know precisely what happens in the
attacked cipher, the best practical alternative to an optimal
distinguisher seems to be the χ2 attack.
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Source of random bit strings (1)

Fourier transform of D0

at point u ∈ Z :

ε̂u =
∑

z∈Z
(−1)u·zεz

D0 or D1S

A

0 or 1

z1, . . . , zn ∈ Z
We consider Z = {0, 1}`
D0 defined by the set {εz}z∈Z
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Source of random bit strings (2)

Properties of the SEI (shown using the Fourier transform):

∆(D0) =
∑

u∈Z
ε̂ 2
u

When B is a random bit, recall the linear probability is
LP(B) = (2 Pr [B = 0]− 1)2. Then,

∆(D0) =
∑

w∈Z\{0}
LP(w · Z)

with LPZmax = max
w∈Z\{0}

LP(w · Z),

∆(D0) ≤ (2` − 1)LPZmax .
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Statistical distinguishers

We know how to distinguish distributions in {0, 1}` of small
cardinality (i.e., ` is small).

What if the source generates variables in {0, 1}L where L is
large?

Solution:
reduce the sample space by means of a projection:

h : {0, 1}L −→ Z .

Z = h(S) ∈ Z follows either D0 or D1.

But how should we choose the projection h?!? (This may be
where cryptanalysis becomes an art !)
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First example of a statistical distinguisher

For some non-zero a ∈ {0, 1}L

h : {0, 1}L −→ Z = {0, 1}
S 7−→ h(S) = a · S .

This is a linear distinguisher.

We note that ∆(h(S)) = LP(a · S) ≤ LPSmax.

Modern ciphers have a bounded LPSmax

⇒ protected against linear cryptanalysis.
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Second example of a statistical distinguisher

h : {0, 1}L −→ Z = {0, 1}`
S 7−→ h(S) .

where h is GF (2)-linear.

Theorem

∆(h(S)) ≤ (2` − 1)LPSmax .

Ciphers protected against linear cryptanalysis (bounded LPSmax)
⇒ somewhat protected against several generalizations!
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Bounded LPS
max and low advantage are not equivalent!

Is it possible to find a distinguisher
with a high advantage,
even though the value of LPSmax is small?

Practical examples exist. For example
Jakobsen and Knudsen’s interpolation attack (where
quadratic functions are used),
Courtois’ bi-linear cryptanalysis.

In the paper we provide an example of a source
impossible to break with a linear distinguisher,
trivially broken by a (well-chosen) non-linear distinguisher.
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Beyond linear probabilities and linear expressions (1)

S

A

S

A

z1, . . . , zn ∈ Z

0 or 1

D0 or D1

x1, . . . , xn ∈ Xy1, . . . , yn ∈ Y

0 or 1

T0 or T1

→ what about random oracles?
We know how to distinguish random sources.
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z1, . . . , zn ∈ Z

0 or 1

D0 or D1

x1, . . . , xn ∈ Xy1, . . . , yn ∈ Y

0 or 1

T0 or T1

Z ∈ Z becomes a couple of random
variables (X,Y ) ∈ X × Y .
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Beyond linear probabilities and linear expressions (1)

S

A

S

A

z1, . . . , zn ∈ Z

0 or 1

D0 or D1

Distribution of Y defined by a transition matrix:
[T ]x,y = Pr[Y = y | X = x]

x1, . . . , xn ∈ Xy1, . . . , yn ∈ Y

0 or 1

T0 or T1

X = φ(P ) and Y = ψ(C)

known plaintext attack→ P ∼ uniform distrib. → X ∼ uniform distrib.
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Beyond linear probabilities and linear expressions (2)

Transition Matrix

[T ]x,y = Pr [Y = y | X = x] .

When T = T1, Y is uniformly distributed.

Bias Matrix

B = T0 − T1 .

Link between bias matrix and SEI

∆(D0) =
|Y|
|X | ‖ B ‖

2
2 .
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Piling-up transition matrices

T (2)

T (1)

X

W

Y
ψ

ξ

φ
P (1)

C(1)

P (2)

C(2)

P (3)
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Piling-up transition matrices

P (1)

C(1)

P (2)

C(2)

P (3) ψ

ξ

φ
X

T (1)

W

T (2)

T

If X ↔W ↔ Y is a Markov chain

T = T (1) × T (2)

Y
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Piling-up transition matrices

P (1)

C(1)

P (2)

C(2)

P (3) ψ

ξ

φ
X

T (1)

W

T (2)

T

If X ↔W ↔ Y is a Markov chain

Y

T = T (1) × T (2)  B = B(1) ×B(2)  ‖ B ‖2≤‖ B(1) ‖2 × ‖ B(2) ‖2

T. Baignères, P. Junod, S. Vaudenay How Far Can We Go Beyond Linear Cryptanalysis?



Introduction
Optimal distinguisher between two random sources
Optimal distinguisher between two random oracles

Conclusion

Beyond linear probabilities and linear expressions
Beyond the piling-up lemma
From distinguishers to key-recovery attacks

Outline

1 Introduction

2 Optimal distinguisher between two random sources
General case
One source following a uniform distribution
Source of random bit strings
Statistical distinguishers

3 Optimal distinguisher between two random oracles
Beyond linear probabilities and linear expressions
Beyond the piling-up lemma
From distinguishers to key-recovery attacks

4 Conclusion

T. Baignères, P. Junod, S. Vaudenay How Far Can We Go Beyond Linear Cryptanalysis?



Introduction
Optimal distinguisher between two random sources
Optimal distinguisher between two random oracles

Conclusion

Beyond linear probabilities and linear expressions
Beyond the piling-up lemma
From distinguishers to key-recovery attacks

Key recovery attacks

The framework can be adapted to key recovery.

In the paper we show how to build an optimal key ranking
procedure that recovers a k bits key provided that the number
of samples n is s.t.

n ≥ 4k log 2

∆(D0)
.

This formula was used to estimate the complexity of attacks
against E0 (don’t miss this morning’s last talk!!).
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Conclusion

We defined a rigorous statistical framework in order to
interpret LC and its generalizations in a unified way.
Modern block ciphers are proven resistant against LC.
This resistance extends to linear generalizations of LC,
. . . but definitely not to non-linear ones!

Thank you for your attention!
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