Linear Cryptanalysis of Non Binary Ciphers (with an Application to SAFER)

Thomas Baignères EPFL

Jacques Stern ENS Serge Vaudenay EPFL

Selected Areas in Cryptography - SAC 07 Ottawa, Canada

- A Block Cipher is commonly described as "a set of permutations $C_k : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ indexed by a key k"
- The data is not always *binary*, e.g. credit card numbers, social security numbers, string of alphabetical characters, etc.
- We don't want to restrict to block ciphers defined over binary strings.

	efficiency	simplicity (security analysis)
encode prior encryption		
dedicated cipher		

- A Block Cipher is commonly described as "a set of permutations $C_k : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ indexed by a key k"
- The data is not always *binary*, e.g. credit card numbers, social security numbers, string of alphabetical characters, etc.
- We don't want to restrict to block ciphers defined over binary strings.

	efficiency	simplicity (security analysis)
encode prior encryption		
dedicated cipher		

- A Block Cipher is commonly described as "a set of permutations $C_k : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ indexed by a key k"
- The data is not always *binary*, e.g. credit card numbers, social security numbers, string of alphabetical characters, etc.
- We don't want to restrict to block ciphers defined over binary strings.

	efficiency	simplicity (security analysis)
encode prior encryption		\gtrsim
dedicated cipher		

- A Block Cipher is commonly described as "a set of permutations $C_k : \{0,1\}^{\ell} \to \{0,1\}^{\ell}$ indexed by a key k"
- The data is not always *binary*, e.g. credit card numbers, social security numbers, string of alphabetical characters, etc.
- We don't want to restrict to block ciphers defined over binary strings.

	efficiency	simplicity (security analysis)
encode prior encryption		\approx
dedicated cipher		$\textcircled{\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

- Arbitrary cardinality is the only structure we assume is that of Abelian Group.
- Do the typical binary security notions easily generalize to this more general assumption?

- Arbitrary cardinality is the only structure we assume is that of Abelian Group.
- Do the typical binary security notions easily generalize to this more general assumption?
- Not always! Linear cryptanalysis is based on a metric called the linear probability, that sticks to the ⊕ operation over binary strings.
- Granboulan et al. [FSE'07] provide a generalization of the LP which is not completely sound (no duality with DC, no means to compute the exact attack complexity, no linear hull effect).

Outline (New Tools...)

Distinguishing a random source over an Abelian group:

- Optimal distinguisher
- Linear distinguisher
- Links between the two
- Distinguishing in practice using compression

Outline (New Tools...)

Distinguishing a random source over an Abelian group:

- Optimal distinguisher
- Linear distinguisher
- Links between the two
- Distinguishing in practice using compression

Distinguishing a random permutation over an Abelian group:

- From random sources to random permutations
- A Toolbox for Linear Cryptanalysis of block ciphers defined over an Abelian group

Outline (...in Practice)

- A ⊞-linear cryptanalysis of SAFER K/SK (our generalization also improves results in the binary case!)
- An attack on TOY100 (toy cipher proposed by Granboulan et al. at FSE'07)
- "New" toy block cipher proposal: DEAN18 (Digital Encryption Algorithm for Numbers)

Distinguishing a Random Source over an Abelian Group

Linear Cryptanalysis of Non Binary Ciphers

The Game

• D is an arbitrary distribution over some set \mathcal{Z} .

• U is the uniform distribution over \mathcal{Z} .

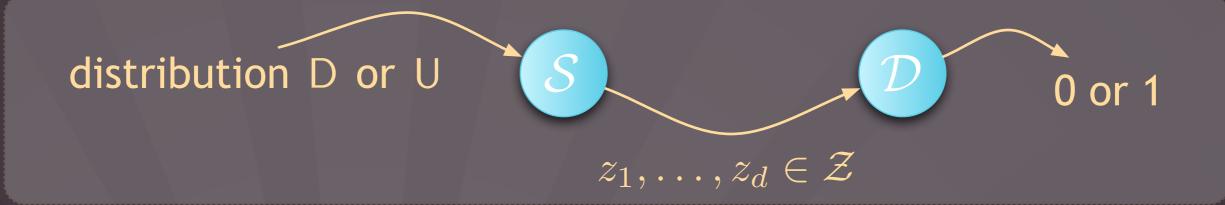
• S is a source that generates d samples $z_1, \ldots, z_d \in Z$ according to distribution D (prob. 1/2) or U (prob. 1/2).

• \mathcal{D} is a distinguisher that outputs 1 if it guesses that the correct distribution is D and 0 otherwise.

The Game

• D is an arbitrary distribution over some set \mathcal{Z} .

• U is the uniform distribution over \mathcal{Z} .



• S is a source that generates d samples $z_1, \ldots, z_d \in Z$ according to distribution D (prob. 1/2) or U (prob. 1/2).

 $\bullet \ \mathcal{D}$ is a distinguisher that outputs 1 if it guesses that the correct distribution is D and 0 otherwise.

• The ability of \mathcal{D} to distinguish D from U is its advantage:

$$\operatorname{Adv}_{\mathcal{D}}^{d} = |\operatorname{Pr}_{\mathsf{U}^{d}}[\mathcal{D} \to 1] - \operatorname{Pr}_{\mathsf{D}^{d}}[\mathcal{D} \to 1]|$$

Best Distinguisher

 Using maximum-likelihood techniques, one can describe an "optimal" distinguisher (i.e., maximizing the advantage).

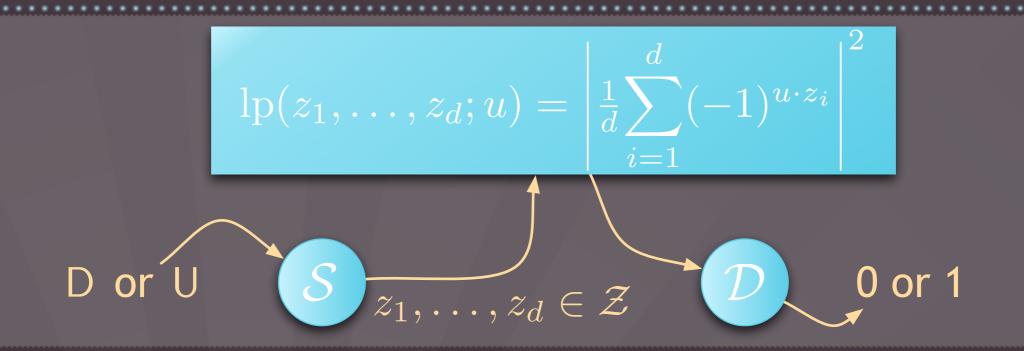
• Defining the Squared Euclidean Imbalance of D as:

$$\Delta(\mathsf{D}) = |\mathcal{Z}| \sum_{z \in \mathcal{Z}} \left(P_{\mathsf{D}}(z) - \frac{1}{|\mathcal{Z}|} \right)^2$$

• ... the best distinguisher has an advantage equal to

$$\operatorname{Adv}_{\mathcal{D}}^{d} \approx 1 - 2 \cdot \Phi\left(-\sqrt{d \cdot \Delta(\mathsf{D})}/2\right)$$

• Using $d \approx 1/\Delta(D)$ samples is sufficient to reach a significant advantage. [BJV04]



$$lp(z_1, \dots, z_d; u) = \left| \frac{1}{d} \sum_{i=1}^d (-1)^{u \cdot z_i} \right|^2$$

D or U S $z_1, \dots, z_d \in \mathbb{Z}$ D 0 or 1

• When the distribution is U:

$$\left| \operatorname{lp}(z_1, \dots, z_d; u) \xrightarrow[d \to \infty]{} \right| \operatorname{E}_{\mathsf{U}}((-1)^{u \cdot X}) \right|^2 = 0$$

• When the distribution is D:

$$\left| \operatorname{lp}(z_1, \dots, z_d; u) \xrightarrow[d \to \infty]{} \left| \operatorname{E}_{\mathsf{D}}((-1)^{u \cdot X}) \right|^2 > 0$$

• Linear Distinguisher based on $LP(u) = (2 Pr[u \cdot X] - 1)^2$.

This description makes no sense when \mathcal{Z} is not $\{0,1\}^n$!!

This description makes no sense when \mathcal{Z} is not $\{0,1\}^n$!!

Definition:

The Linear Probability of D over the group $\mathcal Z$ with respect to the character χ is defined by

 $LP_{\mathsf{D}}(\chi) = |E_{\mathsf{D}}(\chi(X))|^2$

This description makes no sense when \mathcal{Z} is not $\{0,1\}^n$!!

Definition:

The Linear Probability of D over the group \mathcal{Z} with respect to the character χ is defined by

 $LP_{\mathsf{D}}(\chi) = |E_{\mathsf{D}}(\chi(X))|^2$

• A character of $\mathcal Z$ is a homomorphism $\chi:\mathcal Z\to {\mathbf C}^{ imes}$.

This description makes no sense when \mathcal{Z} is not $\{0,1\}^n$!!

Definition:

The Linear Probability of D over the group \mathcal{Z} with respect to the character χ is defined by

 $LP_{\mathsf{D}}(\chi) = |E_{\mathsf{D}}(\chi(X))|^2$

• A character of $\mathcal Z$ is a homomorphism $\chi:\mathcal Z\to {\mathbf C}^{\times}$.

• Example: when $\mathcal{Z} = \{0,1\}^n$ we have $\chi(a) = (-1)^{u \cdot a}$.

This description makes no sense when \mathcal{Z} is not $\{0,1\}^n$!!

Definition:

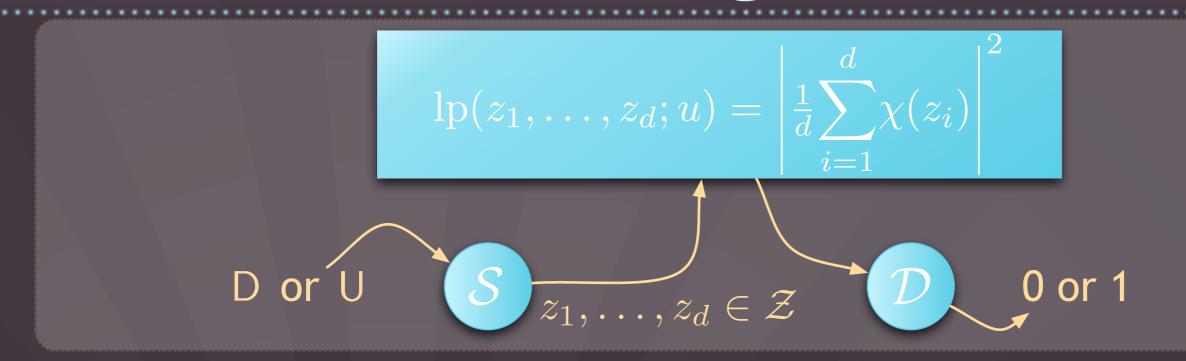
The Linear Probability of D over the group $\mathcal Z$ with respect to the character χ is defined by

 $LP_{\mathsf{D}}(\chi) = |E_{\mathsf{D}}(\chi(X))|^2$

• A character of $\mathcal Z$ is a homomorphism $\chi:\mathcal Z\to {\mathbf C}^{ imes}$.

• Example: when $\mathcal{Z} = \{0,1\}^n$ we have $\chi(a) = (-1)^{u \cdot a}$.

• Consequence: when $\mathcal{Z} = \{0, 1\}^n$ this new definition corresponds to the old one!



• When the distribution is U:

$$lp(z_1, \ldots, z_d; u) \xrightarrow[d \to \infty]{} LP_{\mathsf{U}}(\chi) = 0$$

• When the distribution is D :

$$lp(z_1,\ldots,z_d;u) \xrightarrow[d\to\infty]{} LP_{\mathsf{D}}(\chi) > 0$$

Theorem 7. Let G be a finite Abelian group and let $\chi \in G$. Using heuristic approximations, the advantage $\operatorname{Adv}_{\mathcal{D}}^{d}$ of a d-limited linear distinguisher \mathcal{D} trying to distinguish the uniform distribution U from D is such that $\operatorname{Adv}_{\mathcal{D}}^{d}(\chi) \succeq 1 - 2 \cdot e^{-\frac{d}{4}\operatorname{LP}_{\mathsf{D}}(\chi)}$ (resp. $\operatorname{Adv}_{\mathcal{D}}^{d}(\chi) \succeq 1 - 4 \cdot \Phi\left(-\frac{1}{2}\sqrt{d} \cdot \operatorname{LP}_{\mathsf{D}}(\chi)\right)$) for χ of order at least 3 (resp. of order 2), when d is large enough and under the heuristic assumption that the covariance matrix of $\operatorname{lp}(\mathbf{Z}^{d};\chi)$ is the same for both distributions.³

A linear distinguisher needs $d \approx \frac{1}{LP_D(\chi)}$ samples to distinguish D from U.

Nice Properties

• Link Between Optimal and Linear Distinguishers:

Theorem: $\Delta(D) = \sum_{\chi \neq id} LP_D(\chi)$

• Link Between Linear and Differential Distinguishers:

Property: For all $u \in \mathcal{Z}$: $\widehat{LP}_{D}(u) = |\mathcal{Z}|DP_{D}(u)$

(where \widehat{LP} is the Fourier transform of the LP and where $DP_D(u) = \overline{Pr[A \cdot u = B]}$)

• Other links with the best distinguishers (see the paper).

Linear Cryptanalysis of Non Binary Ciphers

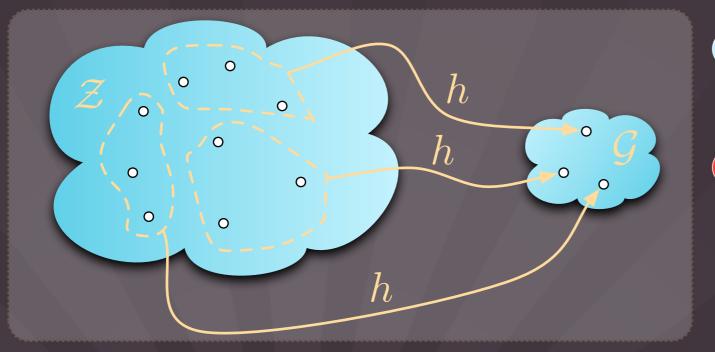
Statistical Dist.

• If $|\mathcal{Z}|$ is too large, the best dist. cannot be implemented.

Statistical Dist.

• If $|\mathcal{Z}|$ is too large, the best dist. cannot be implemented.

Possible solution: reduce the sample size using a projection:



Distinguish in *G* instead of *Z*This reduces the

power of the distinguisher.

(Informal) Theorem:

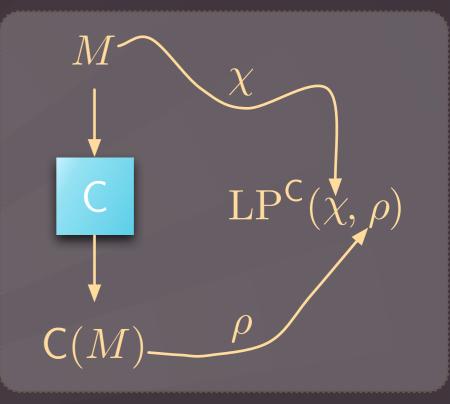
If we can efficiently distinguish using some projection, we can also do it *linearly*.

Linear Cryptanalysis of Block Ciphers

Linear Cryptanalysis of Non Binary Ciphers

Dist. Permutations

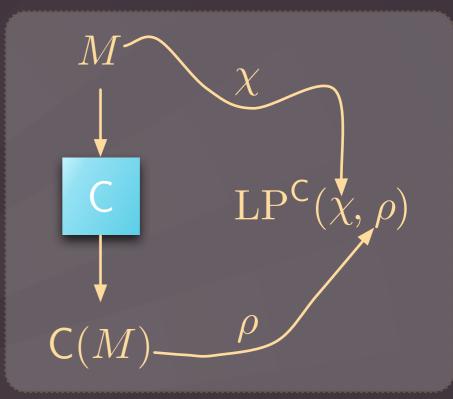
- A simple trick allows to turn distinguishers of random sources into distinguisher of random permutations (block ciphers) [BJV04].
- All the results on random sources apply to random permutations
- In the case of linear cryptanalysis: $LP^{\mathsf{C}}(\chi,\rho) = \left| E_{M \in \mathsf{U}} \mathcal{M}\left(\overline{\chi}(M)\rho(\mathsf{C}(M))\right) \right|^{2}$

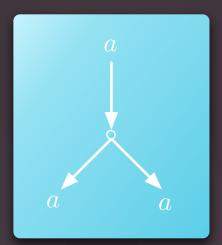


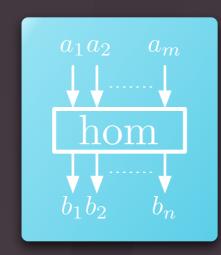
Dist. Permutations

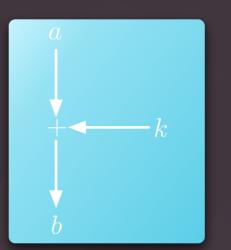
- A simple trick allows to turn distinguishers of random sources into distinguisher of random permutations (block ciphers) [BJV04].
- All the results on random sources apply to random permutations
- In the case of linear cryptanalysis: $LP^{\mathsf{C}}(\chi,\rho) = \left| E_{M\in_{\mathsf{U}}\mathcal{M}} \Big(\overline{\chi}(M) \rho(\mathsf{C}(M)) \Big) \right|^2$

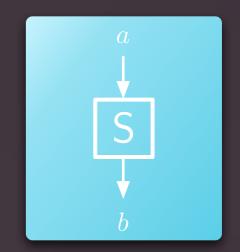
Characters 😂 Masks



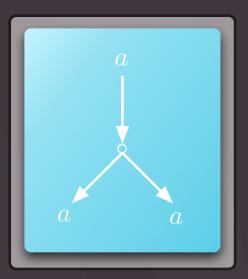


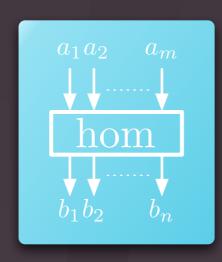


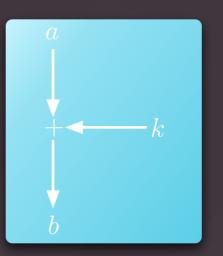


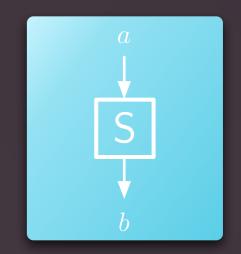


Linear Cryptanalysis of Non Binary Ciphers



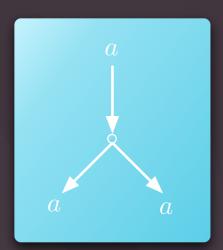




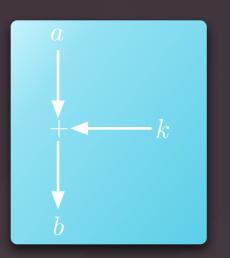


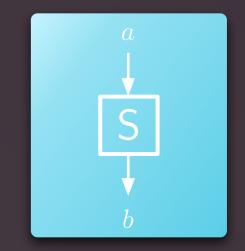
$\operatorname{LP}(\chi_1\chi_2,\chi_1\|\chi_2) = 1$

Linear Cryptanalysis of Non Binary Ciphers



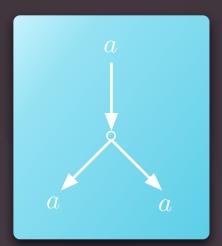


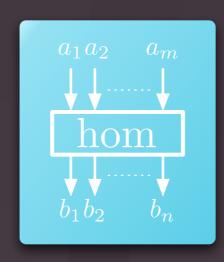


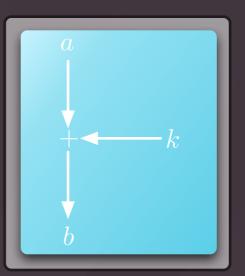


With $\chi = \chi_1 \| \cdots \| \chi_n$ LP $(\chi \circ hom, \chi) = 1$

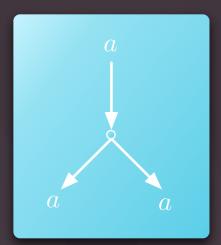
Linear Cryptanalysis of Non Binary Ciphers

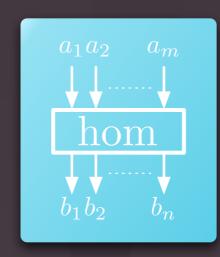


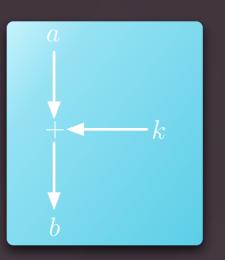


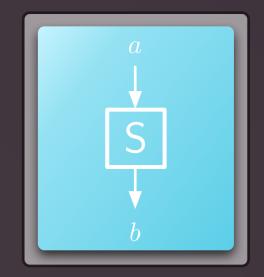


Linear Cryptanalysis of Non Binary Ciphers









Compute $LP(\chi, \rho)$ "by hand"

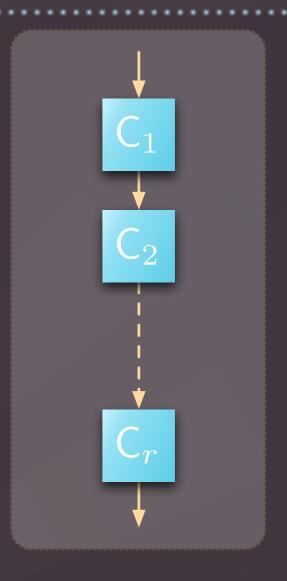
Linear Cryptanalysis of Non Binary Ciphers

• Consider the product cipher:

$$\mathsf{C}=\mathsf{C}_r\circ\cdots\circ\mathsf{C}_1$$

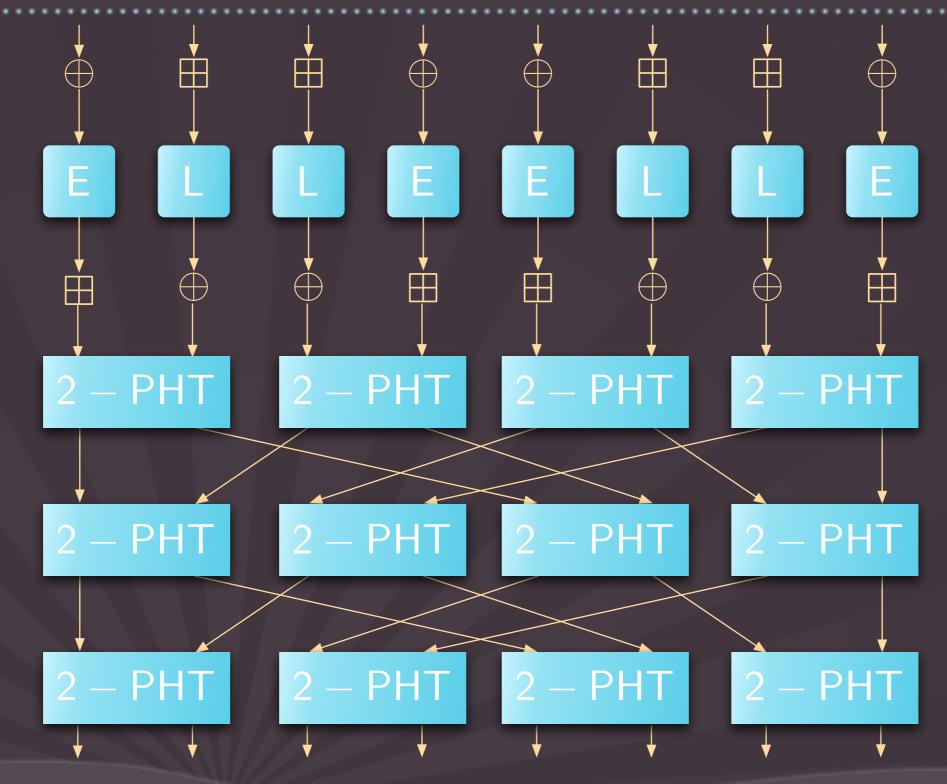
 made of independent Markov ciphers...

we obtain Nyberg's Linear hull effect

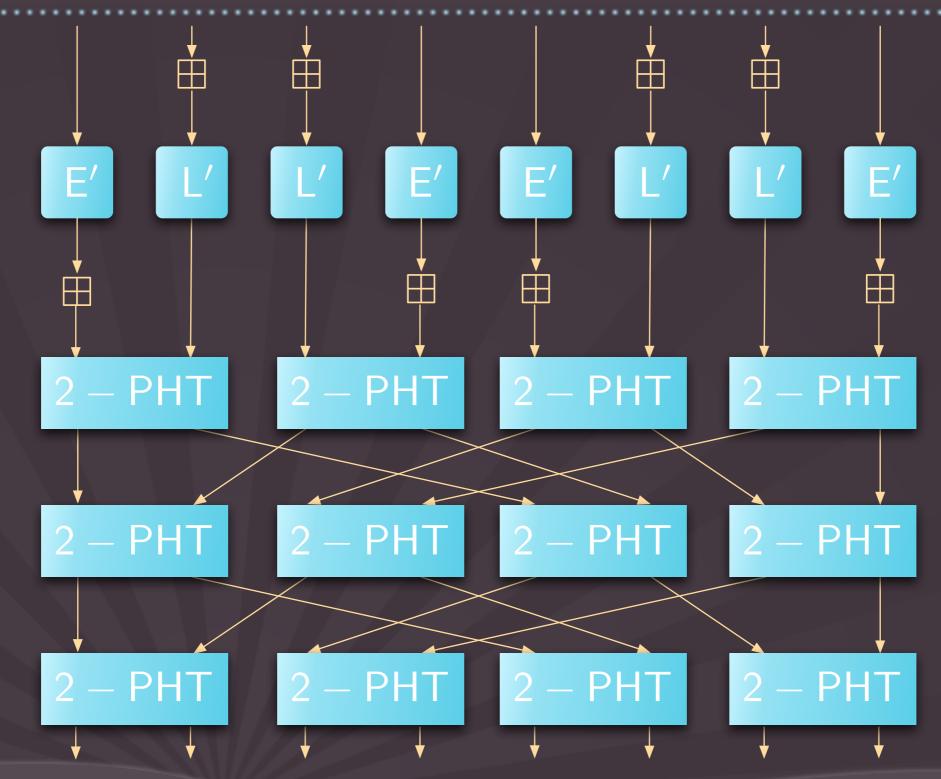


$\operatorname{ELP}^{\mathsf{C}}(\chi_0, \chi_r) = \sum_{\chi_1} \sum_{\chi_2} \cdots \sum_{\chi_{r-1}} \prod_{i=1}^r \operatorname{ELP}^{\mathsf{C}_i}(\chi_{i-1}, \chi_i)$

Applications !



Linear Cryptanalysis of Non Binary Ciphers



- We attack SAFER with a \boxplus -linear cryptanalysis.
- We have to consider characters in $\mathbf{Z}_{2^8}^8$:

$$\chi_{\mathbf{a}}: \qquad \mathbf{Z}_{2^{8}}^{8} \qquad \longrightarrow \qquad \mathbf{C}^{\times} \\ \mathbf{x} = (x_{1}, \dots, x_{8}) \qquad \longmapsto \qquad e^{\frac{2\pi i}{256}\sum_{\ell=1}^{8} a_{\ell} x_{\ell}}$$

- We attack SAFER with a \boxplus -linear cryptanalysis.
- We have to consider characters in $\mathbf{Z}_{2^8}^8$:

$$\begin{array}{cccc} \mathbf{X}_{\mathbf{a}} : & \mathbf{Z}_{2^8}^8 & \longrightarrow & \mathbf{C}^{\times} \\ & \mathbf{x} = (x_1, \dots, x_8) & \longmapsto & e^{\frac{2\pi i}{256} \sum_{\ell=1}^8 a_\ell x_\ell} \end{array}$$

• Use the toolbox to find characteristics with SAFER K/SK

- To compute the complexities of our attacks we consider several characteristics among the hull (i.e., all characteristics share the same input/output characters).
- To turn distinguishing attacks into key recovery attacks, we also take advantage of the linearity of the key schedule.

Attack Complexities:

Nbr Rounds	Complexity
2	$2^{29}/2^{37}$
3	2^{36}
4	2^{47}
5	2^{59}

Attack Complexities:

Nbr Rounds	Complexity
2	$2^{29}/2^{37}$
3	2^{36}
4	2^{47}
5	2^{59}

- These are *not* the best attacks on SAFER.
- Yet, SAFER was though to be secure against linear cryptanalysis.
- These attacks only work on "old" SAFER K/SK. Do they apply to SAFER+, SAFER++?

Other Applications

- Cryptanalysis of 9 rounds (out of 12) of TOY100 (Granboulan et al. at FSE'07).
- We use the fact that the diffusion of TOY100 is not based on a multipermutation (MDS matrix).
- Replacement toy block cipher: DEAN18
 - Structure close to that of the AES.
 - Security analysis against Linear Cryptanalysis.

Conclusion

- Generalization of Linear Cryptanalysis
- Seems to be sound:
 - Equivalent to the classical LC in the binary case
 - Link with DC
 - Linear hull effect
 - Complexity analysis
 - Link with other distinguishers (perfect, statistical,...)
 - Applications, even in the binary case (SAFER)
 - Open doors to new applications:
 - Specific designs
 - New attacks (think of IDEA, RCx,....)

Thank you for your attention!

Linear Cryptanalysis of Non Binary Ciphers